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Current guidelines of the U.S. Environmental 
Protection Agency (EPA) for risk assessment 
differentiate carcinogenic and noncarcinogenic 
responses. Quantitative estimates of risk are 
not developed for noncarcinogenic responses; 
instead, reference doses (RfDs), estimates of 
daily exposures to the human population that 
are assumed to be without appreciable risk 
of adverse effects, are calculated by dividing 
a point-of-departure (POD) dose by factors 
to account for extrapolation from experi-
mental animals to humans, variability within 
the human population, and data limitations 
(e.g., U.S. EPA 1991). With cancer, differ-
ent approaches are applied depending on the 
perceived mode of action (MOA). If there is 
sufficient evidence that the MOA leading to 
cancer is nonlinear, then the assessment does 
not provide a quantitative estimate of risk 
but proceeds in a manner similar to that for 
noncarcinogens. Otherwise, linear extrapo-
lation from the POD to low doses is used 
to quantify low-dose risk (U.S. EPA 2005). 
This bifurcated approach has been criticized 
as being unjustified because there is no clear 
evidence that the dose responses for cancer 
and other toxicities are fundamentally differ-
ent (e.g., Bogdanffy et al. 2001). Also, there 
is concern that having quantitative estimates 

only for cancer has led to an overemphasis on 
this response at the expense of other serious 
hazards (e.g., Crump et al. 1997).

Another perceived shortcoming of current 
methods is that quantitative results, whether 
RfDs for noncarcinogens or risk estimates for 
carcinogens, are presented as point estimates 
(i.e., single values), even though it is gener-
ally recognized that considerable uncertainty 
exists in these estimates. Although a qualita-
tive discussion of the uncertainty is presented, 
it is difficult to translate this discussion into 
quantitative terms. Several proposals have 
been made to quantify uncertainty in risk 
assessments through the use of probability 
distributions [see, e.g., National Research 
Council (NRC) 2008 and references therein]. 
Such an approach could give decision makers 
a much better basis for decision making than 
would be obtained from having only a single-
point estimate.

The NRC Committee on Improving Risk 
Analysis Approaches Used by the U.S. EPA 
addressed these and other issues by devel-
oping far-reaching recommendations for 
changing how the U.S. EPA assesses risk. The 
committee report, titled Science and Decisions, 
(NRC 2008), contains recommendations 
aimed at improving both the utility of risk 

assessments for decision making and the tech-
nical analysis in risk assessment. These latter 
recommendations include ones for probabilis-
tic characterization of risk that involve explicit 
characterization of human heterogeneity and 
harmonizing the treatment of carcinogens 
and noncarcinogens.

The recommendation in Science & 
Decisions for harmonizing cancer and non-
cancer risk assessment involves a paradigm for 
quantitative risk assessment composed of three 
conceptual models that envision three catego-
ries of dose responses derived from mechanistic 
considerations: conceptual model 1, threshold 
dose response at the individual level and linear 
response at the population level; conceptual 
model 2, threshold response at the individual 
level and nonlinear response at the population 
level; and conceptual model 3, linear response 
at both the individual and the population 
level. These models are proposed for use by 
the U.S. EPA in extrapolating dose–response 
relationships to increases in risks that are lower 
than those that can be measured directly in 
most studies (e.g., 10–5). Each of these mod-
els provides a probabilistic description of the 
dose response. However, determining which 
conceptual model is appropriate in a particu-
lar situation would involve understanding the 
“underlying biologic processes and how they 
contribute to an individual’s dose–response 
relationship, the nature of human variability, 
and the degree to which the processes may 
be independent of background exposures and 
processes” (NRC 2008).

This paradigm represents a significant 
departure from current U.S. EPA practice. 
Among the changes incorporated in this 
recommendation are a) providing quantita-
tive low-dose–extrapolated risk estimates not 
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low-dose risk.
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only for cancer, as is currently done, but for 
all types of health effects; b) basing the quanti-
tative approach not on the type of toxic effect 
(whether cancer or not), but on consideration 
of the perceived individual dose responses, 
the nature of human variability, and how the 
toxic substance interacts with background 
processes that contribute to background tox-
icity; c) not restricting linear extrapolation 
to carcinogenic responses but applying it to 
some noncarcinogenic responses as well; and 
d) providing not just a single estimate of risk 
but a probabilistic description.

We offer our congratulations to the 
Science & Decisions (NRC 2008) commit-
tee on their very insightful report, which we 
believe contains many useful recommenda-
tions, particularly the recommendation to 
harmonize risk assessment for cancer and 
noncancer effects. Modifying guidelines to 
implement the committee’s recommendations 
and implementing the resulting guidelines 
would be a major undertaking. More impor-
tant, such changes would constitute a major 
paradigm shift for the U.S. EPA. Before pro-
ceeding on this course, which has far-reaching 
implications, we believe it is prudent to look 
carefully at the proposals to determine if they 
are scientifically credible and operationally 
feasible. We offer this article as a contribution 
to that process.

In this study we focused on the part of the 
proposed risk assessment paradigm identified 
as conceptual model 2. The dose responses 
for toxic effects that fall under this model 
are quantified using human variability dis-
tributions (HVDs). Our evaluation of this 
approach has identified some serious concep-
tual and operational problems.

Low-Dose Extrapolation Using 
HVDs
Conceptual model 2 in Science & Decisions 
(NRC 2008) employs HVDs to estimate 
the dose response from exposure to a toxin 
(HVD modeling) and uses this dose response 
to extrapolate risk to low doses. The approach 
includes the following three features:
•	As explained in Science & Decisions 

(NRC 2008, box 5-3), a median human 
POD, accompanied by a lower bound for 
the POD, is determined from chemical-
specific animal bioassay data and (usually) 
nonchemical-specific data on differences in 
animal and human sensitivity. The POD is 
interpreted as the human dose that would 
cause 50% of humans to respond adversely 
among those who would otherwise not have 
the response. 

•	 A log-normal distribution representing 
human interindividual variability is used 
to extrapolate from the POD down to low 
risk levels (e.g., 10–5). The median of this 
log-normal distribution is set equal to the 

POD, which determines the log mean. 
The log variance is determined from fitting 
log-normal distributions to different sets 
of data representing human variability in 
various pharmacokinetic and pharmaco
dynamic variables that are considered to 
be associated with individual variability in 
response to the toxin. 

•	 The pharmacokinetic and pharmacodynamic 
variables are assumed to interact mutually 
independently and multiplicatively, so that 
the overall distribution of human interindi-
vidual variability is log normal with log vari-
ance equal to the sum of the log variances of 
the individual sources of human variability.
The resulting mathematical expression 

for the risk from a dose, D, can be expressed 
mathematically as

	 logD POD
D1risk

v
U=^ a ah k k% /,	 [1]

where Φ is the standard normal distribution 
function, log indicates base 10 logarithm, 
and σ2 is the overall log variance (the sum of 
the log variances of the individual sources of 
variation). Our focus here is on the third step 
in this process: the use of the distribution of 
human interindividual variability to represent 
the dose response.

Science & Decisions (NRC 2008) does 
not provide details regarding the individual 
steps in HVD modeling. However, the docu-
ment refers extensively to the model devel-
oped by Hattis and colleagues (Hattis et al. 
1999, 2002; Hattis and Goble 2007), and 
the illustrative example provided in Science 
& Decisions relies on this model. The Hattis 
model is a detailed model that has been devel-
oped over many years, and a large amount 
of data has been collected and analyzed in 
its support. Consequently, we consider the 
Hattis model to represent HVD modeling, 
although our conclusions apply more widely.

We need to specify what “risk” is repre-
sented by Expression 1. Because this expres-
sion approaches zero as D approaches zero 
and because many adverse effects can occur 
in unexposed individuals, it does not apply 
to P(D), the probability of responding when 
exposed to dose D. Also, although the “addi-
tional risk” [the probability of disease with 
dose D minus the corresponding probability 
when unexposed, P(D) – P(0)] is zero when 
D  =  0, when background risk is present 
[P(0) > 0], it is not a true probability distribu-
tion because, unlike Expression 1, the addi-
tional risk does not approach 1 as D becomes 
large. Consequently, we believe the best inter-
pretation of Expression 1 is that it represents 
“extra risk”—the additional risk divided by 
the probability of remaining disease free when 
unexposed {[P(D) – P(0)] ÷ [1 – P(0)]}.

Details of the HVD model. The HVD 
model, as formulated in Hattis et al. (1999), 

specifically considers the following pharma-
cokinetic and pharmacodynamic variables 
(called parameters by Hattis and colleagues) 
that can induce variability in overall human 
response: a) contact rate (e.g., breathing 
rate ÷ body weight, fish consumption ÷ body 
weight), b) uptake or absorption (milli-
grams per kilogram ÷ intake or contact rate, 
c) general systemic availability net of first-
pass elimination and dilution via distribu-
tion volume, d) dilution via distribution 
volume, e) systemic elimination ÷ clearance 
or half-life, f) active-site availability ÷ general 
systemic availability, g) physiologic variable 
change ÷ active site availability, and h) func-
tional reserve capacity (i.e., change in baseline 
physiologic variable needed to pass a criterion 
of abnormal function). 

Some of these variables are further sub-
classified by exposure route and age. In most 
cases the available data do not inform vari-
ability from a single variable but from a com-
bination of variables involved in the steps 
from exposure to apical response. For exam-
ple, measurements of serum levels of a toxin 
resulting from measured air concentrations 
would provide information on the variability 
induced by variables a–e in the above list, and 
data on the apical response as a function of 
serum measurements would provide infor-
mation on variability induced by variables 
f–h. Estimates of the individual log variances 
associated with each of the eight variables are 
developed from a regression model based on 
the assumptions of log normality and that the 
total variance can be obtained by adding the 
variances associated with each individual vari-
able (Hattis et al. 1999).

The pharmacodynamic variables (g and h 
in the above list) are quantified using a tol-
erance distribution (i.e., by specifying the 
probability that an individual is affected as 
a function of dose). Such a distribution can 
be thought of as a distribution of individual 
threshold doses; if an individual is affected 
when exposed to a given dose, that means 
his or her threshold was less than the given 
dose, and otherwise the threshold exceeded 
the given dose. Thus, the probability that 
an individual is affected is the same as the 
probability that his or her threshold was less 
than the given dose. In HVD modeling, the 
tolerance distribution (i.e., distribution of 
individual thresholds) is assumed to have the 
log-normal form of Expression 1, which, if 
the POD is identified with a risk of 0.5, can 
be written as Φ {[log(D) – µ]/σ}, where µ 
and σ2 are the log mean and log variance of 
the threshold dose. This distribution is often 
fitted to binary response data in the equiva-
lent log-probit form, Φ[a + blog(D)], where 
b = 1/σ and a = –µ/σ. In HVD modeling, 
σ2 represents the combined variance of all of 
the steps assumed to lead from exposure to 
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response, and the contributions to this vari-
ance by individual steps are estimated by the 
regression approach described above.

Uncertainty in low-dose extrapola-
tion using HVD modeling. Thirty years ago 
numerous papers pointed out that different 
dose–response models could describe toxic-
ity data about equally well in the high-dose 
range, but they could differ by orders of mag-
nitude at low doses (see NRC 1983). The 
identical problem occurs with HVD model-
ing. There is no convincing basis for assuming 
that human distributions of adverse responses 
are log normal. (We address claims of support 
for the log-normal distribution in the next 
section.) In this section, we show that other 
distributions will fit the data about the same 
but provide estimates of low-dose risk that 
differ by many orders of magnitude.

Figure 1 compares the log-normal dis-
tribution in the Science & Decisions exam-
ple used to illustrate HVD modeling (NRC 
2008, box 5-3) with the gamma distribution 
with probability density function (Johnson 
et al. 1991)

	 f ,x x e /x1
a b

b aC
=

a

a b- -
;^

^
h

h
.	 [2]

The gamma and log-normal distribu-
tions agree fairly closely through most of the 
observable range but diverge significantly 
in the tails. Based on the log-normal curve 
shown in Figure 1, Science & Decisions reports 
a median human dose corresponding to a 
risk of 10–5. At this same dose, the risk esti-
mated using the gamma distribution shown 
in Figure 1 is 10–2, a thousand-fold higher.

The gamma distribution was selected for 
this comparison simply for mathematical con-
venience. There is no convincing reason that 
an HVD should follow any particular dis-
tribution (see next section). Considering the 
universe of possible distributions, it is clear 
that there are distributions that match the log 
normal better than the gamma in the observ-
able range (e.g., for risks ≥ 0.01), including 
distributions that replicate the log normal 
exactly in this range but still diverge from 
the log normal at lower risks. (e.g., consider a 
distribution that matches the log normal for 
risks ≥ 0.01 but decreases continuously from 
0.01 to zero at a dose equal to 0.5 of the dose 
corresponding to a risk of 0.01.)

Data sets used to estimate the log-normal 
variances for HVD modeling often con-
tain a fairly limited number of observations, 
which suggests that a wide variety of prob-
ability distributions will often describe these 
data adequately. To illustrate this point, we fit 
the log-normal distribution, gamma distribu-
tion (Expression 2), and shifted log-gamma 
distribution (the distribution of eX – 1 where 
X is gamma distributed) to 198 sets of data 
collected and used by Hattis et al. (2002) to 

model human variability in pharmacokinetic 
variables (Table 1). The gamma distribution 
provided the best fit [i.e., smallest Akaike infor-
mation criterion (AIC); Akaike 1974] to 77 of 
these data sets (39%), the shifted log-gamma 
distribution provided the best fit to 83 data sets 
(42%), and the log-normal distribution pro-
vided the best fit only to 38 data sets (19%). 
In most instances the differences among the 
AIC criteria were very small. Nevertheless, 
this analysis illustrates the notion that, as one 
would expect, there is nothing unique about 
the ability of the log-normal distribution to fit 
HVD data, and distributions other than the 
log normal will typically fit such data as well or 
better than the log-normal distribution.

Use of the Log-Normal 
Distribution in HVD Modeling
Science & Decisions contains no justification 
for the recommendation that a log-normal 
distribution be used in HVD modeling. In an 
informal perusal of the literature, we uncov-
ered two lines of argument in support of the 
log normal. By far the most often cited was 
that a log-normal distribution often fits data 
on human variability (e.g., Hattis and Goble 
2007). However, nowhere did we find an 
examination of the fits of other distributions, 
and, as illustrated above, other distributions 
can fit as well or better than the log normal. 
Consequently, providing an adequate fit to 
data is not a sufficient justification for exclu-
sive use of the log-normal distribution.

A second argument sometimes men-
tioned in support of the log-normal distribu-
tion is based on the central limit theorem, 
which implies that under certain regularity 
conditions the distribution of a product of 
random variables will approach log normal-
ity as the number of terms increases. For 
example, Hattis et al. (1999) stated, “Such a 
[log-normal] distribution would be expected 
if there are many factors, each contribut-
ing modestly to the individual variability 
in threshold doses, and if each factor tends 
to act multiplicatively to affect individual 
thresholds.” However, no phenomenologi-
cal model has been provided to explain how 
the quantitative effect of multiple factors on 
risk could be expressed as a product of the 
individual factors, nor have any such poten-
tial factors even been identified. Without any 
such evidence that the central limit theorem 
is applicable, the theorem does not provide 
any theoretical support for the log-normal 
distribution. Moreover, in a following section 
we present a simple yet plausible phenomeno-
logical model in which two factors interact 
to produce an adverse effect but do so nei-
ther multiplicatively nor independently, both 
of which are conditions needed for applica-
tion of the central limit theorem. Thus, we 
find reliance on the central limit theorem to 

support the exclusive use of the log-normal 
distribution in HVD modeling to be very 
tenuous, especially given its use for low-dose 
extrapolation, as discussed next.

Note that the central limit theorem is 
a limit theorem. Even if the necessary con-
ditions for applying the theorem were met 
(which, as noted above, seems unlikely), the 
resulting HVD distribution would be only 
approximately log normal. The divergence 
from the log-normal distribution would be 
greatest (on a percentage basis) in the tails of 
the distribution, which is the range of inter-
est in low-dose extrapolation. Thus, even if 
the central limit theorem were applicable, 
and even if enough physiologic variables were 
multiplied together to obtain a reasonably 
good approximation to the log-normal dis-
tribution in the observable range, the tails 
of the distribution could still be very poorly 
described by the log-normal distribution.

To investigate the accuracy of the log-
normal approximation (i.e., the log-normal 
distribution whose log transform has the same 
mean and variance as the log transform of the 
true distribution) in predicting the lower tail 
of the HVD distribution, we consider two 
theoretical true distributions: “log gamma” 
and “reciprocal log gamma” (Figure 2), which 
are the distributions of eX and e–X, respec-
tively, where X has a gamma distribution. 
The sum of independent random variables 
having gamma distributions with a common 
α value also has a gamma distribution with 
the same α value and a β value equal to the 

Table 1. Comparison of fits to dataa on variability 
in pharmacokinetic variables.

Model
No. data sets fit 
best by modelb

Total data 
sets (%)

Log normal 38 19
Gamma 77 39
Log gamma 83 42
Total 198 100
aFrom database files 1–4 (Hattis 2006). bBased on the AIC 
(Akaike 1974).

Figure 1. Comparison of a gamma distribution with 
the log-normal distribution recommended by the NRC 
committee (NRC 2008, box 5-3) for estimating low-
dose risks of sodium azide. Inset shows the same plot 
on a log-log scale showing low-dose divergence. 
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sum of the individual β values. This feature of 
the gamma distribution facilitates numerical 
calculations by making it possible to com-
pute the distribution of sums of independent 
gamma distributions with a common α value 
and, correspondingly, the product of indepen-
dent log gamma distributions or reciprocal 
log-gamma distributions having a common 
α value, using only the incomplete gamma 
function and elementary functions.

Figure 3 compares log-gamma and recip-
rocal log-gamma distributions with the cor-
responding log-normal approximations for 
different values of the shape parameter, α, 
in the gamma distribution. The true prob-
ability is plotted on the horizontal axis, and 
the corresponding log-normal approximation 
on the vertical axis. (These curves are inde-
pendent of β.) As indicated by the table in 
Figure 3, each curve has multiple interpreta-
tions. For example, the curve corresponding 
to “reciprocal log gamma nα = 20” shows the 
error in the log-normal approximation to the 

distribution of a) the product of five reciprocal 
log-gamma variables, each with shape param-
eter α = 4 (and a common β); b) the product 
of 10 reciprocal log-gamma variables having a 
shape parameter α = 2; or c) the product of 20 
reciprocal log-gamma variables having a shape 
parameter α = 1.

In each case depicted in Figure 3, the log-
normal approximation matches the exact curve 
closely for probabilities between 0.1 and 0.9 
but deviates considerably from the true value 
in the lower tail. The errors in the approxima-
tion can be in the direction of either over-
estimating (illustrated by the log-gamma 
model) or underestimating (illustrated by the 
reciprocal log-gamma model) low-dose risk. 
For example, with the reciprocal log-gamma 
model, α = 2, and 10 terms in the product 
(nα = 20), when the true risk is 10–5 the log-
normal approximation predicts a risk of 10–8.

Note that the results shown in Figure 3 
depict absolutely best cases: a) The HVD is 
assumed to result from the product of a large 

number (n) of individual physiologic variables 
that contribute to human variation (5 ≤ n 
≤ 80), b) all of these variables are assumed 
to have the same distribution, and c) these 
variables are assumed to be independent. Any 
deviation from these assumptions would be 
expected to degrade the log-normal approxi-
mation. None of these assumptions appears 
to be even approximately valid, including, in 
particular, the basic assumption that human 
variability can be reasonably described by a 
product of individual variables acting inde-
pendently (addressed in a following section). 
But, as Figure 3 demonstrates, even in these 
theoretical best cases, the log-normal approxi-
mation can be in error by as much as several 
orders of magnitude in the low-risk range of 
interest (10–6 to 10–3).

Threshold dose and apical response cannot 
both be log normal. HVD modeling assumes 
that the threshold dose is log normally distrib-
uted. Alternatively, it could be assumed that 
the apical response on which the threshold 
dose is based is log normally distributed. In 
fact, it seems to us that, if the central limit the-
orem argument for log normality has any cre-
dence, it would more likely apply to the apical 
response than to the threshold dose defined 
from the apical response. In this section, we 
show that these two assumptions are incom-
patible: if the underlying continuous apical 
response has a log-normal distribution, then 
the threshold (tolerance) distribution based 
on the apical response cannot be log normal, 
except under highly specific circumstances. 
We also examine the differences in low-dose 
risk implied by these two assumptions.

Suppose an apical response, X, has a log 
normal distribution with median m(D) and 
log variance σ2. This distribution may be 
written as

	 .Pr logX x m D
x1

#
v

U= a
^

ck
h
m6 @ ' 1 	 [3]

Further, suppose that the apical response 
is dichotomized using a cut point A, and 
assume for definiteness that larger values 
of X are more adverse. For example, if the 
threshold dose is defined in terms of some 
continuous response as the dose that results 
in a response equal to 50% of the maximal 
possible response (Hattis et al. 1999), then 
in this case the apical response at a dose is the 
percentage of maximal response and the cut 
point A is 50%. The corresponding tolerance 
distribution (distribution for the threshold 
dose DT defined by the cut point A) is as fol-
lows (see also Appendix):

	 .Pr logD D A
m D1

T #
v
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^
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h
m6 @ ' 1 	 [4]

This distribution, although it appears 
similar to Expression 3, is a function of dose 

Figure 2. Graphs of log-gamma (A) and reciprocal log-gamma (B) probability densities: probability densi-
ties of eX and e–X, respectively, where X has a gamma distribution with shape parameter α and scale 
parameter β.
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D, whereas Expression 3 is a function of x, 
the value of the apical response. Thus, this 
distribution is generally not log normal [an 
exception would be the special case in which 
σ does not depend upon D and m(D) is pro-
portional to D]. A similar observation was 
made by West and Kodell (1999) with respect 
to the normal distribution. Consequently, as 
we started out to show, in general the api-
cal response and the threshold dose defined 
by dichotomizing the apical response cannot 
both be log normally distributed.

The expression for extra risk correspond-
ing to Expression 4 is

	 ,logD p A
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By identifying the POD with a 50% extra 
risk [risk(POD) = 0.5], the cut point A can be 
solved in terms of POD and other quantities. 
The result is as follows (see also Appendix):
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If, as is often the case, the apical response 
can be positive in the absence of dose [p0 > 0 
or, equivalently, m(0) > 0], Expression 6 can 
be rewritten in the equivalent form (see also 
Appendix):
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There are two important differences 
between Expressions 6 and 7 for risk, which 
assume the apical response has a log-nor-
mal distribution, and Expression 1 for risk, 
which is used in HVD modeling. First, in 
Expressions 6 and 7 the risk depends upon the 
median m(D) of the apical response, whereas 
in Expression 1 it does not. Second, from 
Expression 7 it is clear that the low-dose risk 
depends on the behavior of Φ in the neigh-
borhood of Φ–1(p0), whereas in Expression 
1 the low-dose risk depends on the behav-
ior of Φ in the neighborhood of zero. Thus, 
these two expressions can have very differ-
ent consequences for low-dose risk. Table 2 
illustrates these consequences by comparing 
estimates of risk calculated using HVD mod-
eling (Expression 1) with estimates based on 
Expression 7.

HVD variables do not act independently 
and multiplicatively. As noted above, in HVD 
modeling the log variances of the individual 
(assumed log normally distributed) variables 
that contribute to variability are summed to 
obtain the overall log variance. This assumes 
that different variables are independent and 
that the overall effect of these variables can 
be represented by the product of the indi-
vidual variables (or reciprocals of these vari-
ables, since the log variance of a variable is the 
same as that of its reciprocal) or, equivalently, 
by the sum of their logarithms. We are not 
aware of any mechanistic support for these 
assumptions. As demonstrated in the follow-
ing simple example, they do not appear to be 
valid in general.

Suppose that data are available on an apical 
response X as a function of blood serum con-
centration C of a toxin rather than the external 
dose. If this response is dichotomized to form 
a tolerance distribution for the concentration 
threshold, as is often done in HVD model-
ing, the probability of an adverse response 
as a function of C would thus correspond to 
Expression 1 using serum concentration rather 
than external dose, as follows:

	 ,log C1
POC1v

U c am k' 1 	 [8]

where σ1
2 is the total variance associated with 

the steps between blood concentration and api-
cal response, and POC is the blood concentra-
tion corresponding to 50% response. Further, 
assume a constant external dose rate D and 
first-order elimination of the toxin. Under 
these conditions, the serum concentration C 
is proportional to the product of the external 
dose D and the biological half-life T, that is, 
C = KTD, where K is constant. We make the 
assumption of HVD modeling that T is dis-
tributed log normally in the population, with 
log mean µT and log variance σ2

2. Based on 
Expression 8 and the assumptions regarding C 
and T, the probability of an adverse response 
is given by (see also Appendix)
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where ϕ is the standard normal probability 
density function. This expression is differ-
ent from what would be predicted by HVD 

modeling (Expression 1 with σ2 = σ1
2 + σ2

2). 
Moreover, in this example the threshold serum 
concentration is not independent of the half-
life T, as assumed in HVD modeling.

If, rather than assuming the threshold 
serum concentration to have a log-normal 
distribution, the continuous apical response 
upon which it is based is assumed to be log 
normal with median m(C) and variance 
σ2, the expression for risk is equal to (see 
Expression 6 and Appendix)
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which also is different from Expression 1. 
In this case as well, the expression for risk 
(Expression 10) is not a log-normal distribu-
tion, as assumed by HVD modeling, and X 
and T are not independent.

This demonstrates that, in general, criti-
cal assumptions implicit in HVD modeling 
are not valid. These assumptions are that the 
various physiologic variables included in the 
model are independent and that the joint 
effect of multiple variables that affect risk can 
be represented by the product of the individ-
ual variables. Moreover, we know of no real-
istic and nontrivial phenomenological model 
that does satisfy these conditions.

Discussion
The NRC (2008) found “substantial defi-
ciencies” in the current approaches to the 
treatment of uncertainty and variability in 
quantitative risk assessment of both cancer 
and noncancer outcomes. To address these 
concerns, they recommended three concep-
tual models for estimating low-dose risk. In all 
of these models, clear separation is maintained 
between a) estimation in the range of observa-
tion (e.g., the derivation of a human POD 
using benchmark dose modeling and probabi-
listic cross-species, route, or duration adjust-
ments) and b) extrapolation to low doses. The 
focus of our analysis is on the reliability of 
low-dose extrapolation using models derived 
from HVD modeling, recommended by 
“conceptual model 2” in Science & Decisions 
(NRC 2008). We conclude that the prospects 
for improving (i.e., reducing uncertainty in) 

Table 2. Comparison of risks predicted by Expression 7 with p0 = 0.05, σ = 0.4, and m(D) = 1 + Dk with cor-
responding risks predicted by Expression 1.

Dose
Risks from Expression 7 Risks from 

Expression 1k = 0.5 k = 1 k = 2
POD 0.5 0.5 0.5 0.5
POD/10 1.8 × 10–1 5.0 × 10–2 4.6 × 10–3 6.2 × 10–3

POD/10 5.0 × 10–2 4.6 × 10–3 4.5 × 10–5 2.9 × 10–7
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estimates of low-dose risk using HVD model-
ing are not encouraging, for several reasons.

First, low-dose extrapolation of risks pre-
dicted by HVD modeling is unreliable due to 
model uncertainty. Although the log-normal 
model is mathematically convenient, there is 
no scientific justification for assuming that 
HVDs are log normal. Moreover, other distri-
butions will describe the available data equally 
well but provide low-dose risk estimates that 
differ by many orders of magnitude from 
those obtained under the log-normal assump-
tion. Therefore, although estimating human 
variability in the range of the observed data 
may not be sensitive to the choice of distribu-
tions, so use of the log-normal distribution 
for that purpose may be adequate, there is 
likely to be high uncertainty in any significant 
extrapolation to the tail of the distribution.

Second, in HVD modeling the log-normal 
expression for risk as a function of applied dose 
(Expression 1) is best interpreted as the condi-
tional distribution of threshold doses given 
that the threshold is positive (i.e., as extra risk). 
These thresholds are often derived by dichoto-
mizing a continuous or graded apical response. 
Although the log-normal assumption would 
seem to apply more naturally to the apical 

response itself, a log-normal distribution for 
the apical response is incompatible with a log-
normal distribution for the threshold (except 
under highly restrictive conditions). However, 
assuming that the continuous apical responses 
are log normal can lead to very different risk 
estimates than assuming the derived thresholds 
are log normal (Table 2).

Third, the assumption in HVD model-
ing that risk can be expressed as a function 
of a product of independent variables lacks 
phenomenologic support. Here we present a 
biologically plausible model in which the two 
variables affecting risk interacted neither mul-
tiplicatively nor independently. Consequently, 
this assumption appears to be generally invalid. 
This assumption may not have much impact 
in the range of observation if it leads to an 
adequate description of the data, but its lack 
of support calls into further question the reli-
ability of its use for low-dose extrapolation.

In view of these problems, we recommend 
caution in the use of HVD modeling to set 
exposure standards for human exposures to 
toxic chemicals. Special cases in which appli-
cation of HVD modeling to estimate low-
dose risk may be reasonable, if such cases 
exist, remain to be identified.

Whereas this paper focuses on concep-
tual model 2 that employs HVD modeling, 
Science & Decisions also proposes the use of 
conceptual models 1 and 3 under certain con-
ditions. Both of these models estimate low-
dose risk by linear extrapolation from a POD. 
These models also have uncertainties related 
both to the linear assumption and to the slope 
that results from linear extrapolation from 
a POD. However, arguments for the use of 
linearity have scientific support in many situ-
ations such as when the toxic substance or a 
metabolite acts by interacting with DNA or 
by augmenting a mechanism that is already 
acting to produce background responses (e.g., 
Crump et al. 1976). Regarding the slope that 
results from linear extrapolation from a POD, 
except in the case of concave dose–response 
curves, it is generally expected that such a 
slope will be a reasonable upper bound to 
the actual slope at low dose. Even this lim-
ited amount of scientific support appears to 
be missing from HVD modeling. It should 
also be noted that if HVD modeling is not 
restricted to the log-normal distribution, it is 
not an alternative to linear extrapolation. This 
is because distributions exist, including those 
that match the log-normal distribution closely 
in the observable range, that are linear at low 
dose and nearly linear between a reasonably 
low POD and the origin.

Developing reliable estimates of low-dose 
risk is extraordinarily difficult. Weinberg 
(1972) referred to the low-dose extrapolation 
problem as “transscience,” meaning a problem 
that can be stated in scientific terms but that 
science is unable to answer. This sentiment 
appears to be just as relevant today as when 
originally expressed. Aside from HVD mod-
eling, the most focused attempt at improv-
ing estimates of low-dose risks has been 
through biologically based dose–response 
(BBDR) models. Such models incorporate 
data on biological processes at the cellular and 
molecular level to link external exposure to 
an adverse effect. At one time there was con-
siderable optimism that BBDR models could 
provide more reliable estimates of low-dose 
risk. Today that optimism seems misplaced, 
and future prospects for BBDR modeling to 
provide improved estimates of low-dose risk 
are not encouraging. In a companion paper 
(Crump et al. 2010), we detail the impedi-
ments in developing BBDR models for this 
purpose and conclude that “these problems 
appear so intractable . . . that BBDR models 
are unlikely to be fruitful in reducing uncer-
tainty in quantitative estimates of human risk 
from low-level-exposures.”

Given these difficulties with BBDR and 
HVD modeling, we expect that linear extrap-
olation methods, like those proposed by the 
NRC committee in conceptual models 1 and 
3, are likely to be the least uncertain of the 

Appendix: Additional Details on Mathematical Expressions

Expression 4. We write X = X(D) to indicate the dependence of the apical response X upon 
dose D. Since X(D) ≥ A is equivalent to DT ≤ D, we can write
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Expression 6. If D in the right-hand side of Expression 5 is replaced by POD, the left-
hand side equals 0.5, which yields an equation involving POD and A. If this equation is 
solved for A and the result substituted for A in Expression 5, then Expression 6 results.

Expression 7. If m(D) in the right-hand side of Expression 5 is replaced by m(0), the left-
hand side equals 0, which yields an equation involving m(0) and A. If this equation is solved 
for A and the result substituted for A in Expression 5, then Expression 7 results.

Expression 9. In this model the apical response X has a compound distribution (Johnson 
et al. 1999) specified in terms of a log-normal distribution (Expression 8) that depends on 
the parameter T, which has its own distribution. For a fixed half-life T = t, the blood concen-
tration is C = KDt. Consequently, corresponding to Expression 8,
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Moreover, the half-life T has its own distribution with log-normal probability density function
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Expression 10. This expression is derived in the same way as Expression 9, but using 
Expression 6, with D replaced by C, POD replaced by POC, and σ replaced by σ1, in place 
of Expression 8.
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quantitative approaches to assigning reason-
able upper bounds on human risk. This con-
clusion arises out of the consideration that, 
with the possible exception of a population 
threshold response, linear is the only particu-
lar dose–response shape that has any general 
scientific support, and linear extrapolation 
from an appropriately chosen POD is gen-
erally considered to be a reliable approach 
for estimating its upper bound slope. Basing 
quantitative risk estimates on the concept 
of a population threshold is not appealing 
for two reasons. First, even in cases in which 
individual thresholds may exist, whether a 
population threshold exists will be uncertain. 
Second, even if a population threshold were 
to exist, it would generally not be possible 
to set bounds for its value without making 
unverifiable assumptions.

Presently there is optimism that advances 
in molecular toxicology that permit many 
more chemicals to be tested in in vitro sys-
tems at greatly accelerated rates and reduced 
costs (Collins et al. 2008; NRC 2007) will 
revolutionize toxicity testing and risk assess-
ment. The strength of these methods arises 
from their ability to provide information 
on more proximal markers of dose and on 
early markers of contributions from multiple 
pathways to diseased states (Andersen and 
Krewski 2009; Krewski et al. 2009). Although 
these in vitro systems may have increased sen-
sitivity that will allow the observable range 
to extend to lower doses, at the same time 
they will require “new” extrapolations, such 

as from in vitro to in vivo and from early 
marker to adverse effect, in order to generate 
quantitative estimates of human risk. Given 
the difficulty in incorporating in vivo data 
on intermediate steps in toxic processes into 
BBDR models that can reliably be used to 
predict human risk, we are pessimistic about 
the prospects of using in vitro data effectively 
in such models. We believe that the potential 
of these data for characterizing human health 
risks (and thus providing support for setting 
exposure standards to protect human health), 
while reducing the need for whole animal test-
ing, can best be realized through risk assess-
ment and risk management paradigms that do 
not involve or require developing quantitative 
estimates of low-dose human risk.
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